
i^CVD 

REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-03- 
Public reporting burden for this collection of infomiation is estimated to average 1 hour per response, including the time for reviewing 
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any ott 
this burden to Department of Defense, Washington Headquarters Sennces, Directorate for Information Operations and Reports (070 
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for fi 
valid 0MB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. , 

^36c^ 
ngthe 
lucing 
!02- 
jrrently 

1. REPORT DATE (DD-MM-YYYY) 
01/06/2003 

2. REPORT TYPE 
Final Report 

3. DATES COVERED (From - To) 
From 14/04/1999 to 14/10/2002 

4. TITLE AND SUBTITLE 
Micro-Stress  and Failure Analysis of Textile Composites 

5a. CONTRACT NUMBER 
F49620-99-1-0240 
5b. GRANT NUMBER 
F49e20-99-l-0240 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

Youqi Wang 
Department of Mecha-iicM' :^-d Nuclear Engineering 
Kansas State University 
Manhattan, KS 66506 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Kansas  State  University 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

2 Fairchild Hall 
Manhattan, KS 66506-1103 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research 
801 N. Randolph St., Rm. 732 
Arlington, VA 22203-1977 

10. SPONSOR/MONITOR'S ACRONYM(S) 
AFOSR 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for publio release ; 
alstribution luilimited. 

13. SUPPLEMENTARY NOTES 20031028 212 
14. ABSTRACT 

Project objectives are the development of more optimal mechanics approaches for textile composite design and failure analysis. Tailoring of the textile 
composite microstructure is one of the most pressing research issues in textile composite design. The textile pre-forming process determines the 
microstructure of the textile preform. Preform microstructure determines textile composite micro-stress distribution. Development of a numerical approach 
that facilitates establishment of relations between textile microstaictures and textile processes is, therefore, critical. In this project, two new numerical 
methods are developed. The first is a digital element simulation approach for textile mechanics. It enables simulation of the textile process as well as 
simulation of textile preform defomiation. As a result, detailed knowledge of the textile preform microstructure becomes obtainable. The second method 
developed in this project is a heterogeneous element method for the micro-stress analysis of textile composites. Formulation of a heterogeneous element 
guarantees that both the equilibrium conditions and the continuity of displacement at the interface are satisfied. Yet, it allows for interface stress and strain 
jump. Because the formulation reflects the actual physical situation at the interface, it provides a much more accurate result than conventional approaches 
if the same mesh is used. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF:   None 

a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

40 

19a. NAME OF RESPONSIBLE PERSON 
Youqi Wang 
19b. TELEPHONE NUMBER (include area 
code) 

785-532-7181 
Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Sid. Z39.18 



MICRO-STRESS AND FAILURE ANALYSIS 
OF TEXTILE COMPOSITES 

Principal Investigator: 

Final Report 

Youqi Wang 
Department of Mechanical and Nuclear Engineering 
302 Rathbone Hall 
Kansas State University, 
Manhattan, KS 66506 
Tel: 785-532-7181, 
E-mail: wang@mne.ksu.edu 

Institution: Kansas State University 
2 Fairchild Hall 
Manhattan, KS 66506-1103 

Grant Number: F49620-99-1-0240 

Period of Performance:       April 15,1999 - Octoberl4,2002 



MICRO-STRESS AND FAILURE ANALYSIS OF TEXTILE COMPOSITES 

Youqi Wang 
Department of Mechanical and Nuclear Engineering 

Kansas State University 
Manhattan, KS 66506 

Final Report 

I. OBJECTIVES 

Project objectives are the development of more optimal mechanics approaches for textile 
composite design and failure analysis. Tailoring of the textile composite microstructure is one of 
the most pressing research issues in textile composite design. The textile pre-forming process 
determines the microstructure of the textile preform. Preform microstructure determines textile 
composite micro-stress distribution. Development of a numerical approach that facilitates 
establishment of relations between textile microstructures and textile processes is, therefore, 
critical. In this project, two new numerical methods are developed. The first is a digital element 
simulation approach for textile mechanics. It enables simulation of the textile process as well as 
simulation of textile preform deformation. As a result, detailed knowledge of the textile preform 
microstructure becomes obtainable. The second method developed in this project is a 
heterogeneous element method for the micro-stress analysis of textile composites. Formulation 
of a heterogeneous element guarantees that both the equilibrium conditions and the continuity of 
displacement at the interface are satisfied. It also allows for interface stress and strain jump. 
Because the formulation reflects the actual physical situation at the interface, it provides a much 
more accurate result than conventional approaches given the use of the same mesh. This project 
serves the interest of the Air Force Research Laboratory because it contributes to the goal of its 
on-going project "Micro-mechanical Failure Criteria." The contact persons at the Air Force 
Research Laboratory are Senior Scientists, Dr. Nick Pagano and Dr. Ajit Roy. 

II. DIGITAL ELEMENT ANALYSIS IN TEXTILE MECHANICS 

2.1 Basic Concept of Digital Element Analysis 

Digital element analysis is a new numerical tool developed in this project for textile mechanics. 
It can be used for textile process design and fabric deformation, strength and failure analysis. 
In digital element analysis, each fiber or yam is modeled as a frictionless pin-connected rod 
element chain. These rod elements are defined as "digital elements." Contacts between fibers or 
yarns are modeled by contact elements.   Textile processes and fabric deformation are formulated 
as a non-continuum mechanics problem vdth boundary conditions. A procedure, similar to finite 
element analysis, is adopted to derive yam movement during textile processes or fabric 
deformation. 

Three critical concepts suffuse digital element analysis:   digital chain, contact between digital 
chains, and yam assembly. 



2.1.1 Digital chain 

A digital chain is composed of many rod-elements, defined as "digital elements", as shown in 
Fig.l. Frictionless pins, defined as "nodes", connect rod-elements. As the length of these rod- 
elements approaches zero, the digital chain becomes fiilly flexible. It is thus able to represent a 
one-dimensional flexible physical entity with a fixed cross-section, such as fibers and yams. 

Digital Rod Elements 

Frictionless Pins 

Fig.l Concept of Digital Chain 

In digital element simulation, the flexible nature of a digital chain is conveyed by fiictionless- 
pins, which cormect digital elements. Digital element size must be very small. Otherwise, 
physicality (in this case, flexibility) cannot be preserved. The digital chain is a digital 
representation of a flexible physical entity. Digital element length reflects digital discretization 
resolution. 

The stiffness matrix of the digital element is the same as the stiffness matrix of the rod element 
used in finite element analysis [1-2], which can be expressed as: 

M=f 

1 0 0 -1 0 0 

0 A 0 0 -A 0 

0 0 A 0 0 -A 

-1 0 0 1 0 0 

0 -A 0 0 A 0 

0 0 -A 0 0 A 

(1) 

where E is the modulus, A is the cross-section area, L is the length of the digital element and A is 
a small perturbation used to prevent the singularity of the global stiffness matrix. A must be 
much smaller than 1. Generally speaking, it is on the order of 10 

2.1. 2 Contacts between Digital Chains 

-6 10 12 

When the element length approaches zero, contact between two digital chains can be represented 
by contact between nodes from two neighboring chains. See Fig.2. If the distance between two 
nodes is smaller than the diameter of the digital chain, a contact element is added between them. 
The stiffness matrix can be expressed as 



Digital chains 

Contact Element 

Fig.2 Contact Element between Two Neighboring Digital Chains 
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where k„ and ks are the compression stiffness coefficient and the lateral stiffness coefficient, 
respectively. 

If contact occurs between two nodes, one of two kinds of physical conditions would exist: 
sticking or sliding. 

Two digital chains would stick together if//F„ >\F,\, where /J. is the friction coefficient, F„ is the 

compressive force between two nodes, and F, is shear force between two digital chains. In a 
rigid contact, displacements of node / and node j are constrained to be the same. Thus, the 
penalty method can be employed. Stiffness coefficients k„ and h are replaced by a large penahy 
number. 

Sliding occurs between two yams if//F„ ^\F,\. If this occurs, the lateral stiffness coefficient ks 

would be zero. 



2.1.3 Yam Assembly 

Two digital element analysis models have been developed. One is called "single chain digital 
element analysis"; the other is called "multi-chain digital element analysis". The former operates 
on the level of yam; the latter on the level of fiber. 

Single-chain digital element analysis 

In a single chain digital element analysis, a yam is modeled as a single digital chain. It is a 
flexible, one-dimensional physical entity with a constant cross-section, most commonly circular. 
Once the yam is discretized into digital element chains, each element receives an element 
number and each ncvde receives a nodal number. Then, contact elements are positioned between 
two neighboring digital chains if they contact each other. The element stiffness matrices are 
calculated and a global stiffness matrix is assembled. Given specific boundary conditions, nodal 
displacements and element stress and strain can be derived. Yam paths inside a fabric are defined 
by nodal positions; yam tensions are defined by element stresses. 

Fig.3 shows a simple twisting process simulated by single chain digital element analysis. Fig.3- 
a is the set-up for the twisting process. Two spring elements are placed at the bottom of the 
yams in order to maintain yam tension. First, the top ends of the two yams are moved upward a 
distance of Ah to achieve initial yam tension. This provides a pre-twist yam tension. Then, the 
bottom ends of both spring elements rotate along a circular tract. Thus, a twisted yam is 
produced. Fig.3-b is the twisted yam created by digital element simulation. One also can 
visualize the length of the digital elements from 3-b. 

Yarn 

Spring 

Motion 
Track 

3-a Numerical Model 3-b Twisted Yam 

Fig.3 Digital Model and Simulation Results for the Twisting Process 



Multi-chain digital element analysis 

Multi-chain digital element analysis follows physicality more precisely. In this model, each fiber 
is modeled as a digital chain and each yam is composed of many fibers, i.e. a yam is modeled as 
an assembly of digital chains. After fibers are discretized into digital chains and after yam is 
assembled, the process used in the previous model can be adopted. Fiber paths are defined by 
nodal positions. Yam is defined as an assembly of fibers. Fiber tension and strain are defined by 
element stress and strain. Yam tension is the summation of fiber tensions within the yam. Yam 
cross-section shape is defined by fiber arrangement within the yam. The method can be used to 
simulate textile processes and fabric deformation under both static and dynamic loads. 
Compared to the single chain digital element approach, the muhi-chain model can much more 
accurately derive both yam movement and cross-section deformation. Yam cross-section 
deformation influences yarn paths during forming and deformation processes. Both yam and 
fiber tension can thus be predicted. This allows investigation of fabric failure mechanisms under 
external loads. 

During the textile process, inter-fiber compression and friction play important roles in fabric 
deformation and failure. Because the multi-chain digital element approach closely follows 
physicality, it should provide a much more accurate result than the single chain digital element 
analysis for the prediction of fabric micro-geometry, deformation and strength. 

Physically, a yam is composed of himdreds or thousands of fibers. Current computer power 
limits the amoimt of chains that can be used to model each yam. In most cases, 19-50 digital 
chains are sufficient to represent yam cross-section geometry. 

4-a Yam under Single Side Compression 
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4-b Deformed Yam 4-c Middle Cross Section 

Fig.4 Yam Deformation under Single Side Compression 



Fig.4 illustrates the simplest example of multi-chain digital element analysis. A yam is under 
single side compression. It is modeled as an assembly of 32 digital chains. Fig.4-a shows the 
loading condition. Fig.4-b is an isometric view of the deformed yam. Fig.4-c is the middle 
cross-section shape of the deformed yam. 

2.2 Numerical Examples 
Two numerical examples are presented in this section. In the first example, a two-dimensional 
weaving process is simulated using both single- and multi- chain models. In the second example, 
a three-dimensional braiding process is simulated. One can compare the difference between the 
microstractures calculated by use of the two different approaches. 

2.2.1 Two-Dimensional Weaving Process 

A two-dimensional weaving process was simulated using the single chain digital element 
approach. A step-by-step simulation of the weaving process is illustrated in Fig.5. Tensions 
applied to wefts and warps are the same through out the process. Fig.6 is a woven fabric 
generated by the single chain digital element model. Although yams are compressed from the 
top or the bottom during the weaving process, this model cannot simulate yam cross-section 
deformation, as shovm in the figure 6. 
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Fig.5 Step-by-Step Simulation of the 2-D Weaving Process 
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Fig.6 2-D Woven Fabric Generated by Single Chain Digital Element Model 
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Fig.7 2-D Woven Fabric Generated by Multi-Chain Digital Element Model 

Fig.7 displays a woven fabric generated using the multi-chain digital element model with the 
same weaving process. Each yam is an assembly of 19 digital chains. Total cross-section area 
of the 19 fibers is equal to the cross section area of the single yam. Other parameters taken in the 
simulation are the same. Fig.8 illustrates yam cross-section along different sections inside the 
fabric. Fig.8-a is the cross-section along the warp direction. Fig.8-b is the five cross-sections 
along the weft direction. The positions of the five cross-sections are defined in Fig.8-a. For the 
sake of clarity, cross-sections of fibers that belong to the same yam have the same color. 
Although only 19 fibers are used for each yam, one can observe that yam cross-section varies 
fi-om one position to another. 
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8-a Side View along Warp Direction 
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8-b Cross-Sections along the Weft Direction 

Fig.8 Cross-Sections of 2-D Woven Fabric Generated by 
Multi-Chain Digital Element Model 



2.2.2. Three-Dimensional Braiding Process 

The microstructure of the three-dimensional braided preform is much more complex than the 
conventional two-dimensional textile preform. Yam topology and geometry inside a preform 
cannot be observed from the surface of the fabric. Because yams are entangled and because yam 
axes inside most textile preforms extend as a three-dimensional spatial curve, it is very difficult 
to investigate detailed yam geometry even with the use of a microscope. 

Fig.9-a is a three-dimensional braided preform generated by use of the single chain digital 
element model. Fig.9-b is the cross-section of the preform. Fig.lO-a shows a three-dimensional 
braided preform generated by use of the multi-chain digital element model. Fig.lO-b is the 
cross-section of the preform. Although these two preforms have the same topology, their 
respective micro-geometries differ. Fig.lO-c is the isometric view of the multi-chain preform. 
Yam cross-section shapes vary from section to section. Cross-section deformation, in tem, 
affects the spatial paths of yams and the volume fraction of fibers. Both the spatial paths of 
yams and the volume fraction of fibers play critical roles in the determination of the mechanical 
properties and failure mechanisms of textile composites. 

9-a 3-D Braided Preform 9-b Preform Cross-Section 

Fig.9    3-D Braided Preform Generated by the Single Chain Digital Element Model 

2.3 Conclusions 
In this project, digital element analysis is used to simulate textile processes. Yet the value of the 
approach is much more extensive. It is a general numerical approach: it can be used to 
investigate other mechanics problems, such as the deformation of textile preforms during the 
manufacturing process of textile composites. Further, it enables calculation of fiber tension 
inside fabrics. As such, it also can be employed to investigate the strength and failure 
mechanisms of textile fabrics under both static and dynamic loads. Given specific boimdary 
conditions and specific extemal loads, the digital element model can also be used to simulate the 
failure process step by step and to predict the strength of the fabric. 
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10-a  3-D Braided Preform 10-b Cross-Section 

10-c Isometric View 

Fig. 10    3-D Braided Preforms Generated by Multi-Chain Digital Element Models 

III. HETEROGENEOUS FINITE ELEMENT ANALYSIS 

3.1 Introduction 

Micro-failure often emanates from the yam (fiber)-matrix interface. It can be caused by 
interfacial stress c :ncentration or interfacial debond. Therefore, it is important to predict 
interfacial stress concentration. Many attempts have been undertaken using the conventional 
finite element approach. However, there have been two great obstacles: 

1.   The modulus of the fibers (or yams) can be 50-100 times higher than the matrix. Serious 
stress concentration along the yam-matrix and fiber-matrix interfaces therefore exists. It is 
important to predict this interfacial stress concentration. Use of the conventional iso- 

II 



parametrical displacement element cannot satisfy the equilibrium conditions along the 
interface. It thus provides poor prediction performance of interfacial stress concentration. 
Significant error may occur even with employment of a fine mesh. A commonly considered 
way to improve the convergent rate of stress is to employ a mixed or hybrid finite element 
method, as it is possible to construct compatible stress fimctions. However, due to the huge 
difference of moduli between fibers and matrix, there is a tangential stress jump at the 
interface between the two materials. Even with the employment of a compatible stress 
function, the element still fails to model the stress jump, so it still may be unable to converge 
to the actual stress at the interface. 

It is very difficult to match element boundaries to the yam-matrix and fiber matrix interfaces 
because textile composite microstructure is very complex.. The micro-geometry of the yam 
cross section varies from cross-section to cross-section, so mesh generation is a time 
consuming and tedious task. 

displacement 

^,y) 
(^"(x.y}a„'(x,y) 

7//fe  
''Displacement 

{t/(x,y), v'(x,y)} 

Fig. 10 Interfacial Physical Conditions 

Fig. 10 illustrates the interfacial physical conditions between two materials, material 1 and 
material 2. Material 1 has a modulus of Ei and a Poisson ratio of vj; material 2 has a modulus of 
E2 and a Poisson ratio of v^. The displacement field in material 1 is defined by {v/(x,y), v'(x,y)} 
and the displacement field in material 2 is defined by {u"(x,y), v"(x,y)}. u denotes displacement 
in the x-direction and v denotes displacement in the j-direction. Physical reality at the interface 
includes: 

a. continuity of displacement at the interface, 
(Refer to Fig. 10. {u'{x,y), v'(x,y)} = {u"(x.y), v'^(x,y)} along the interface.) 

b. discontinuity of normal strains(£-„), shear strains(/„,) and tangential stress (o>) at the 
interface, and 

c. equilibrium conditions, i.e. continuity of normal stress and shear stress 

(a^   = a" ,    r'nt = T" ) at the interface. 

Where cr denotes normal stress, r denotes shear stress, 8 denotes normal strain, y denotes shear 
strain and subscripts n and / denote normal direction and tangential direction at the interface of 
two materials, respectively. 
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A heterogeneous element, in contrast to conventional elements, can contain one or more kinds 
of materials with different moduli and other mechanical properties. Matching element boundaries 
to fiber-matrix interfaces is unnecessary. More importantly, heterogeneous element formulations 
more realistically reflect interfacial physics. 

In this project, we developed two heterogeneous element approaches. One is a displacement 
based element formulation; the other a mixed-form element formulation. For the former, 
displacement continuity along the interface is guaranteed. Stress equilibrium along the interface 
is satisfied in a weak form. Discontinuity of normal strains(fr„), shear strains(;?'„/) and tangential 
stress (<T/) at the interface can also be modeled. For the latter, all three conditions, continuity of 
displacement at the interface, discontinuity of normal strains, shear strains and tangential stress 
at tiie interface and equilibrium conditions, are strictly satisfied. 

Numerical results show the heterogeneous element approach as much more accurate than the 
conventional iso-parametric and conventional mixed element approaches. It also avoids 
difficulties inherent to mesh-generation. 

3.2 Displacement Based Heterogeneous Element 

3.2.1 Shape Functions 

displacement 

4    ! 

,-1 

11 -a  6-node heterogeneous element 11-b Natural Coordinates 

Fig.l 1 6-Node Standard Heterogeneous Element and Their 
Natural Coordinate System Mapping 
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Fig.l 1 shows a standard 6-node heterogeneous element, referred to as "D6" in this report. The 
element contains two material parts, materials / and //. The interface is represented by a straight 
line intersecting two opposite element sides and creating the two side nodes. Each material part 
is treated as a sub-element that is mapped to a 2 by 2 square in a natural coordinate system, the r- 
s system. Shape functions are denoted as H,^, where i= 1, 2, ..., 6, representing element nodal 
numbers and A" = /, //, representing the material index. The shape functions are: 

material / material // 

Hi=\{\-r){\-s) H! =\i\-r){\-s) 

H[=\{\ + r\\-s) Hi'=\{\ + r){\-s) 

H'^\{\ + r){l + s) H''=\{\ + r)(} + s) 

Hi=\{\-m^s) H'^ =\i\-r){\ + s) 

The element coordinates are interpolated as 

material / material // 

x=   Y^Hlx, 
(=1,2,5,6 '=6,5,3,4 

y= T^ly^ y=  ZH!'y, 

(3) 

(4) 

<=1,2,5,6 /=6,5,3,4 

3.2.2 Displacement Functions 

Degrees of Freedom 

«6    ^Pi 

II     n II 

Fig. 12 Additional Degrees of Freedom 
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If iso-parametric displacement functions are applied to each sub-element shown in Fig.ll, the 
stress equilibrium conditions between the two materials cannot be satisfied. In order to address 
stress equilibrium conditions, two additional degrees of freedom are introduced to the sub- 

element node at the interface, a/ and P^ (/ = 5, 6 and K = l, II), where K is the material index 

and / is the nodal number, a/ and fil^ are defined as derivatives of displacements u and v 
along the tangential direction of the element's left and right side boundaries at the interfacial 

K node, i.e. or,   = 
'du'^ 

dt. 
K and Pi   = 

^dv'^ 

' j 
dt. 

. tj directions are shown in Fig. 12. Since coordinate 
' y 

mapping is linear and r is constant along the element's left and right sides, or,    and y9,    can be 

expressed in terms of natural coordinates, such as: 

a' = 
[dt, 

[dt) 

II 
  

  
  

  
II 

[dsj (5) 

where Z,-^ is the side length of the element shown in Fig. 12. 

Displacement Functions 

The element displacements in material / and material // are interpolated as: 

Material / 

1=1,2,5,6 (=5,6 

;=1,2,5,6 /=5,6 

r//„// 

Material // 

1=6,5,3,4 /=6,5 

v"=   Z^S^Y^^I^P," 
1=6,5,3,4 1=6,5 

(6) 

where N/, M/, N", M" are displacement interpolation functions of material / and material //. 
They can be expressed as: 

Material / 

Ni=k{l-rl\-sY 

Mi =-^{l-arils') 

M, 

Material // 

(7) 

It can be proved that the above displacement functions satisfy the unit properties, i.e.. 
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K 
1. At any node/y = 1,2, ...,6, 

N.'^ =0       if   i*j   and   iV,^ = 1 
M/ = 0 

2. At interfacial nodes 5 and 6, 

if   i = J (8-a) 

a/ 
— = 0   if    i^j   and 

a/, ^= 1    if   i = J 

dN[ 

di. 

(8-b) 

In addition, the continuity of displacement at the interface is automatically satisfied. It is not 
difficult to prove   {u'(x,y), v(x,y)} = {u"(x,y), ^^(x,y)} along the interface. 

Stress and Strain 
The strains in each material can be derived by differentiating displacements u and v with respect 
to coordinates x and y as: 

du 
r           -.1 

^x dx 
/ dv 
~\ ^. >    = <i 

y dy 
y.y du    dv 

— + — 
dy    dx 

A5 

3x12   3x2 

Bi.l 

3x2 

U 

Ai 

(9-a) 

r                "1 
du 

- II 

11 
^x dx 

dv 
e   =\ f^. r      •— 1 

—      y 
> dy 

l^'^J du    dv 
— + — 
dy    dx 

3x12   3x2      3x2 

U 

Aj 
A" 

(9-b) 

where U denotes {M, V, U2 V2 u^ V3 u^ v^ u^ V5 u^ v^Y, a vector listing of nodal 

displacement variables, Af denotes vector {arf y^/^ f for (/ = 5, 6 and J^ = /, II), and [B^ J and 

\B%\ are partial strain-displacement transformation matrices of material A" related to variables in 

U and in Af respectively. Stresses can then be derived by Hooke's Law. 

The stresses derived from displacement interpolations are distributed linearly along the interface, 
and the strain in the r, direction is linear along the element's left and right sides, as displayed in 
Fig. 13. In oiuc: Ic maiiitain stress equilibrium at any point on the interface, it is necessary and 
sufficient to maintain the equilibrium of stresses at both interfacial nodes. 
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linear cr" 

linear 

Fig. 13 Stress and strain 
distribution along interface and 

element boundaries 

linear a' 

Stress along the Interface 

Fig. 14 Interfacial co-ordinate system 

The interfacial {t-n) coordinate system is shown in Fig. 14, where t is pointing in the tangential 
direction of the interface, and n is pointing in the normal interfacial direction. Stresses in the t-n 
coordinate system in each material K{K = I, II) can be evaluated by using strain-displacement 
relations, Hooke's Law, and stress coordinate transformation as follows: 
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<y, 

l^tn) 

K 

= [TJ cr.. 

xy) 

>  =[TJD^} 

l^xv 

K 

(10) 

where [T^] is the stress transformation matrix, [D] is the elastic matrix and K is the material 
index (KHU). 

Displacement  Compatibility between  Heterogeneous  Elements:   Stress  Equilibrium  along 
Dissimilar Material Interfaces: Element Stiffness Matrix 

There are two stress equilibrium conditions along the interface: 
a..' =(T"   and (11) 

Since stresses are linear along the interface, satisfaction of stress equilibrium conditions at two 
interfacial nodes guarantees satisfaction at any point on the interface. The implementation of the 
two conditions described in eqs. 11 at two interfacial nodes, means the following four stress 
equations must be satisfied: 

Node 5: 

[(TJ2-3lk][k]5«4Bi5]5A5l=[(Tj2-3]kl[kl5U-k5]5Af] (12-a) 
2x3      3x3    3x12 3x2 2x3      3x3    3x12 3x2 

Node 6: 

[(T.)..3][D'][k].U + kJ.Aj]=[(Tj„][D"][[Bilu + te],Af]        (12-b) 
2x3      3x3    3x12 3x2 2x3       3x3    3x12 3x2 

in which [(T^)2_3] denotes the matrix that contains the Z"** and 3''' rows of matrix [X^]. Af {K = 
I, II) does not affect stresses at node 6 and vice versa. 

The above four equations restrict the four degrees of fi-eedom; thus. A/ and Af are not 
independent degrees of freedom given the interfacial stress equilibrium equations (12-a) and (12- 
b) are considered.    Once Af is determined, Af can be derived using Eqs.(12). 

Refer to Fig. 15. In order to maintain displacement compatibility between two adjacent 
heterogeneous elements, e.g., element A and element B, the following relationship must be 
satisfied: 

jA?r=(Afr 
However, if (AJ )  = (A^ ) , (A^ J  and (A^ ) can be derived from stress equilibrium conditions, 

that are Eqs.(12) for element A and B, respectively. The derived [A") and (A^ j can not equal 
each other. This means the interfacial stress equilibrium and the compatibility between two 
adjacent heterogeneous elements can not be satisfied simultaneously. 

(13) 
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Material // 
4r 

(a3",A"Nk".A"r 

Material // 

II 

15-a  Maintain Interfacial Equilibrium and Compromise Displacement Compatibility 

4r- -^3 

{a,",A"Nk".A'7 

(a/,^/yAa/,fi/y 

15-b Maintain Displacement Compatibility and Compromise Interfacial Equilibrium 

Fig. 15 Displacement compatibility and interfacial equilibrium conditions 

:'i?i: weak form oi interfacial equilibrium conditions is developed in order to maintain displacement 
continuity between adjacent heterogeneous elements. Refer to Fig. 16. For each element, 
instead of using the continuity of normal and shear stresses at nodes 5 and 6, an average of the 
equilibrium conditions at an interfacial node for the adjacent elements is used. For example, on 
the interfacial node between A and B, a weak form of the equilibrium conditions can be 
expressed as: 

u A^.if-k'lr 4.':r (H) 

Through mathematical manipulation, a weak form of the equilibrium conditions becomes: 

[s„Bu^+[s„]:u».[sit(A;r+ki(A;r-kXi^-ir-^-iiwir=« o^) 
where [S„E,[S„I,[s;t,[sl]:,[sjt a„d[s;I are derived from 
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(16) 
K];=[fc),_3]'(k]k]-[D"]k']): 

where K = I, II, e - A, B and / = 5,6. Assuming (A^ J = [A[ ^ and (A^ J = [A." ^, one derives: 

1 2        1 2 1 

Fig. 16 Element A is adjacent to elements B and C 

Therefore,(A5y and [A")^ is dependent on each other. Without loss of generosity, assume 

{A.'^)   is an independent variable and   [A")   is a dependent variable, which can be expressed 

as: 

Following exactly the same procedure, dependent variables (A" )   is shared by elements A and 

C which can be expressed as: 

Dependent variables can be eliminated in strain-displacement relations and element stiffness 
matrices. Substituting Eqs.(18) into Eqs.(9),  the strain-displacement relations are be expressed 
as 
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r^=[B^    0   0   BI5    BU 

(19) 

-=[(B?r (B?r (B?r (B^g^-^ k^r 

''ej 
where 

k]'=kJsi'r+[s;'fy'[s„E 
M4KMU¥it}'M (20) 
ksr=k.fet-kErkt-Kr) 
k.r=k.fcf+kW'kf-kt) 

The element stiffness matrix K can be derived as: 

Stress Boundary Conditions 

The distributed loao applied to the boundary is transferred into equivalent nodal forces based 
upon the Virtual Work Principle. Fig. 17 shows an example. The distributed stress in the x 
direction is applied to each material at element boundary 2-5-3. The virtual work done by the 
forces on virtual displacement Su is: 

(21) 
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dw' = t''q'{r,s)du'{r,s)dl' 

I jl       . 

2    ■^■ 

q'n 
3       '        3        ' 

1 M.„' Sa^ 

Sw"=rW(r,s)Su"(r,s)dl" 

= i!A.[^du"{r = \,s)ds 

2 

2q"L Jl T" 

3        '       3       ' 6 ' 

(22-a) 

(22-b) 

Fig. 17 Equivalent nodal forces for the heterogeneous element 
based on the Principle of Virtual Work 

Therefore, according to the Principle of Virtual Work, the equivalent nodal forces are: 
/ TI ^„'TI     n^i'T" ^" T" 

3 3 
\2 

(23) 

where (/i), is the force on displacement M„ and {m^!^ is the generalized force on displacement 

derivative a^   . 

The equivalent forces on  dependent variables   \"   and   A"   are transferred onto other 
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independent variables based on the Principle of Virtual Work. Assume M" is a vector listing of 

forces on dependent variables Af . Refer to Eq.(18-a). Replacing [SJ^^f, [Syl^, and [SJ^ Jg with 

zeroandreplacing [sj,^^,[Sf;]5^,and[sj^f with [s;;^]5, [Sf;^,and [s^ , Eq.(18-a) becomes: 

(Af)=(kint^-lU + [sll(AO) (24) 

The virtual work by M" on virtual displacement SA" is: 

[M^^^f Mf =[M/r([si^]3)"([S,laJ + Kl(M.^) ) (25) 

Then,[Mfffe]5y[Sf;]5 and [M^f(^[s^'^^ [s^ are added onto nodal forces 

corresponding to variables U and A 5 respectively. 

Displacement Based Heterogeneous Element with Different Interface Locations 

The interface can be located in many places in a displacement based heterogeneous element. For 
the convenience of mesh generation , six elements with different interface locations are derived, 
as shown in Fig. 18. They are formulated using exactly the same process as the 6-node standard 
element; only the node mapping sequence from the element coordinate system to its natural 
coordinate system is different. Details can be found in reference [2]. 

Convergence Properties 

Displacement functions of displacement based heterogeneous elements can represent all rigid 
body displacement modes and represent constant stress and strain states. They are complete. 
Further, displacement compatibility is guaranteed along the interface between adjacent 
heterogeneous elements. In addition, they are compatible with the neighboring iso-parametrical 
elements. Heterogeneous element formulation, therefore, satisfies the condition for monotonic 
convergence. Numerical resuhs show that it converges at a much faster rate than conventional 
iso-parametric elements. 
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(a) 6-node standard element 

(c) 5-node corner element (d) 4-node corner element 

(e) 4-node point element 

j   Material IT\ 

(f) 4-node side element 

Fig. 18 2-D displacement-based heterogeneous elements 
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3.3 Mixed Heterogeneous Elements 

As has been explained, a displacement based heterogeneous element formulation can only satisfy 
a weak form of interfacial equilibrium conditions. For this reason, a second mixed form of 
heterogeneous element is developed. This formulation enables enforcement of interfacial 
equilibrium conditions and compatibility conditions. 

There are two kinds of stress interpolation functions used in mixed elements: 

1. The u/a-c formulation (c stands for continuity of stresses between elements), in which 
element stresses are defined by nodal stress variables, and iso-parametric interpolation 
functions; 

2. The U/G formulation, in which stress variables are local. Continuity of stress is not enforced 
between elements but results from the solution of the finite element if the mesh is fine 
enough. 

The first stress formulation can represent the continuity of normal stress (traction force) and 
shear stress along the dissimilar material interface, but cannot reflect the tangential stress jump 
along the interface. The second approach allows for the tangential stress jump, but cannot satisfy 
the continuity of normal stress and shear stress along the interface. 

The heterogeneous element formulation developed in this project modifies the second approach. 
It guarantees the continuity of normal and shear stress along the interface, yet it also allows for 
the tangential stress jump between two materials. In addition, the displacement fimction 
guarantees compatibility along the interface and between elements. Using this mixed element 
approach, the material's constitutive relations, i.e., Hooke's Law, is realized through Reissner's 
Variational Principle. 

3.3.1    Mixed Heterogeneous Element Formulations 

For the mixed heterogeneous formulation, the key issue is how to construct the displacement 
and stress interpolation functions. The stress interpolation should not be of too high an order 
compared to the displacement interpolation, for the element could again behave like a 
displacement-based element, so be ineffective. On the other hand, the stress interpolation 
should not be too low an order compared to the displacement interpolation, for the stress 
prediction could be too inaccurate. Generally, stress interpolation fimctions are of a lower 
order than displacement interpolation functions because actual stresses are found through 
strains as derivatives of displacements. 

Shape Functions, Displacement Functions and Strain-displacement relations 

Refer to Fig. 19. A standard mixed heterogeneous element contains two sub-elements, each 
being composed from a material, material / and material //, respectively. Shape functions and 
displacement functions of mixed heterogeneous elements are the same as displacement based 
heterogeneous elements, which are expressed by Eqs.(9) and can be written as: 
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displacement={M^^, v'^} 
yi stress = \a'J,ajyjy} 

'3 

s" ♦ 
A"f 

1 

Materiajl // 

 IM. 
0,0 

idisplacement ={u', v^} 
stress = {o-^,cr^,r^^) 

^" i-1 
Fig. 19 6-node Standard Mixed Heterogeneous Element 

with Natural Coordinate System Mapping 

y 

Tr" 

du 
^ I 

^x dx 
I dv 

£    =< ^•\ >     zzr 4.   
y dy 

[y^\ du    dv — + — 
dy    dx 

= [BI BI5 BQ 
3x12   3x2      3x2 

u 

Ai 
= [B']V (26-a) 

du 

£"=^ Sy 

II 
dx 
dv 

dy 
V^\ du    dv — + — 

dy    dx 

II 

3x12   3x2      3x2 

u 
A5 
A// 

[B^^]V (26-b) 

where V is {w, v, u^ v^ u, v, u, v, u, v^ u^ v^ a\ /?/ a[ fii a'^ p" a'J J3i'}', a vector 

listing of all displacement variables, and where [B^] and [B^] are the strain-displacement 
transformation matrices for material / and //, respectively. 

Stress Functions 

Stress interpolation functions are one degree lower than displacement ftmctions. They are 
defined as: 
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Material / Material // 

1=0,5,6 

'=0,5,6 

/=0,5,6 

1=0,5,6 

(27) 

1=0,5,6 /=0,5,6 

where   {CT^)Q , {crj/, and (cr^)g'^ denote stresses at the sub-element center (r=0, s=0), node 5 

and node 6 for material /, respectively. Similariy,(cr^)/^, {cr^X"' and {cr^\" denote stresses at 
the sub-element center (r=0, s=0), node 5 and node 6 for material //, respectively. They can be 
written as: 

(28) 

M,'={<^J r=0,s=0 ("X'-M" r=0,5=0 

Ms'-i'^J r=i,s=l ("X'i'^J' r=l,s=l 

(-,V=W r=-l,s=\ ("X-i-J' r=-l,j=l 

M/ and M" are the interpolation functions. They can be expressed as 

Material / Material // 
Ml' =l + s 
Mi'=-\(-r + s) (29) 

It can be proved that the above stress interpolation functions satisfy the unity property similar to 
Eqs.(8-a). 

Eqs.(27) can be expressed in matrix form as: 

C^) 

>   =[M'O    Mi    M'M 

Ji 

■xy) 

II 

>   =[M^^    Mf    M^^J 
k'l 
•f 
K 

(30-a) 

(30-b) 

Refer to Fig.20. Stress functions expressed in eqs. (30) are linear functions along the interface 
and the boundary of the element. Based upon the strain functions expressed in eqs. (26), both 
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normal and tangential strains are linearly distributed along the interface. In addition, tangential 
strain distributes linearly along the left and right boundaries of the element. 

linear 

linear e , <J 

linear 

linear £ , o" 

linear 

linear 

Fig.20 Stress and Strain Distribution along the Element Boundary and Interface 

Interfacial Stress Equilibrium Conditions 

Stress along interface coordinates can be derived similarly. Refer to Fig. 14. Stress along the 
interface can be written as 

^/ 
1 

^x 

(^n = ITJ ""y 

[^tn\ k-vj 
and 

In 

n 

= ITJ 
^ 

// 

(31) 

where [T^ ] is the stress transformation matrix. 

There are two equilibrium conditions that need to be maintained at the interface in order to 
reflect physical conditions there: 

1 ' I' 

r. I II 
2-    7,„   =r,„   . 

Since the stress functions are linear functions along the interface, satisfaction of the two 
conditions at V^Q iiiterfaciai nodes guarantees satisfaction at any point on the interface. 
Implementation of the two conditions at both interfacial nodes gives rise to four stress equations: 
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tn) $ 

II 

■tnJs 

and 
'inJe 

II 

'nj 6 

(32) 

Therefore, the four stress variables are dependent variables. They can be eliminated. Combining 
eqs. (30), (31) and (32), stress within the two materials can be expressed in interfacial 
coordinates as: 

U 1 
.^=\ .   =[M'O    M^    M^} 

l^-vj 

> = [M],_/W 

.// 

L^-vJ 

r      ^1I 
cr, 

M' 

where 

M^OT;'  M^T;'  M^T;' 
3x3 3x3 3x3 

"tn 

0 
3x4 

= [Ml_„"{a} 

(33) 

[M],_/' = 0   (MfT;')2_3   0   (MfT;')2_3  M^T;'  (Mfx;'),  (Mfx;'), 
3x4 1^9 3x1 3x2 3x3 3x1 3x1 

(34) 

{-}=[MO Mi Uo Ms Mi Us (^.)6 k)6 Ue M; M'^ U: MI M'I] 

(MfT;'),and(MfT;'), consist of the first column of (Mfx;') and (Mfx;'). (MfX;')2_3 

and(Mf X;' )2_3 consist of the second and third columns of (Mf X;') and (M^-^X;:'). 

The formulation of the mixed heterogeneous element guaranteed the stress equilibrium condition 
along the interface and the displacement compatibility along the interface and element boundary. 

Distributed Boundary Stress Conditions 

Using the virtual work principle, distributed boundary stress translates to nodal forces. Since 
the mixed heterogeneous element uses the same displacement fimctions, the same procedure 
listed in eqs. (22) can be adopted. Equivalent nodal force resuhing from distributed load can be 
expressed by eqs. (23). 

Reissner's Variationai Principle 

Reissner's Variationai Principle enables one to derive 

29 



-QC 
C^  0 Ivl iFl 

(35) 

where {CT} and {V} are expressed in Eqs.(34) and Eqs.(26), {F} is an equivalent nodal force 
vector applied on dis:placement {V}, and [Q] and [C] are 

/ n 

I II 

(36) 

where [S] is the compliance matrix and t is the thickness of materials. 

Refer to Eq. (35).  Stress vector {ff} is considered as internal variable vector. It is expressed in 
terms of the element displacement as: 

w=[Qr'[c]{v} 

Eliminating {a} in eq.(35), one can derive 

[cr[Qr[c]{V} = {F} 

Mixed Heterogeneous Elements with Different Interface Locations 

(37) 

(38) 

Similar to the displacement based heterogeneous element, a total of six mixed heterogeneous 
elements with different interface locations are developed. They are shown in Figs. 18. 

IV NUMERICAL EXAMPLES 

4.1 Numerical Example 1 

Material Young's 
modulus, E 

Poisson's 
ratio, V 

/ 200 GPa 0.2 

II 2GPa 0.34 

Fig.21 Numerical Example 1 
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Fig. 21 illustrates the first example. It consists of two materials. Core material modulus is 100 
times ring material modulus. Uniform pressure is applied. A plane-stress state is assumed. Refer 
to Fig. 21. Assume: <TQ = 1000; a = \;b = 2. 

An analytical solution for this problem exists. Stress distribution in material /is: 

0-, = -^1 

= -0-, 
I = 0 

(39) 

Stress distribution in material // is: 

n _ flV(cro -o-t) 1   ^ gVi -b^cr^ 

b^-a^      r" V-a' 
„       a^6^(o-o-g-i) 1     flfVi-6Vo 

12 2 b   -a b^-a^ 

^r9     =0 

(40) 

where a, is the radial pressure between the two materials, which is: 

cj, = Vra, 
E" 

n-l 

y{\-v'lb' -a'yb'[\Wya'[\-v") (41) 

Element 
boundary 

Interface 

Element 
boundary 

Interface 

22-a Coarse Mesh 22-b Fine Mesh 

Fig.22 Finite Element Mesh 
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Fig.23-a Comparison of Radial Stress Derived from 
Four Different Approaches (Coarse Mesh) 
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Fig.23-a Comparison of Radial Stress Derived from 
Four Different Approaches (Fine Mesh) 
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The two finite element meshes shown in Fig. 22 are used to compare the accuracy of the 
heterogeneous element approach to conventional iso-parametric (homogeneous) elements and 
conventional (homogeneous) mixed elements. Fig.23a compares radial stress distribution along 
the OR (Shown in Fig.22) derived from the coarse mesh. Fig.23b is derived from the fine mesh. 
Five curves appear in each chart. The black curve is derived from the analytical solution. The 
red curve is derived from iso-parametric element approach. The green is from the conventional 
mixed element approach. The blue and purple curves result from the application of the 
heterogeneous element along the interface. The blue curve is derived from an approach in which 
displacement based heterogeneous elements are employed along the interface and iso-parametric 
elements are used elsewhere. The purple curve is derived from an approach in which mixed 
heterogeneous elements are employed along the interface and conventional mixed elements are 
employed elsewhere.. One finds that the blue and purple curves are very close to the analytical 
solution. It shows that the application of heterogeneous elements improves accuracy 
dramatically. 

4.2 Numerical Example II 

1111  1-.1  1   1  11 

t  t  1  t  I..I  t   I  1  t 

24-a Cross-section 

24-b    Unit cell and Boundary Conditions 
Fig.24 Numerical Example II 
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Table 1      Material properties of fibers and resin 

Material Young's modulus (GPa), E Poisson's ratio, v 

Fiber 325 0.15 

Matrix 3.45 0.35 

Figure 24-a shows the material domain of the second numerical example. It illustrates a 
unidirectional fibrous reinforced composite cross section. Moduli and Poisson ratios of fibers 
and matrix are listed in Table 1. Because fibers are periodically distributed inside the material 
domain, only a unit cell is required to determine stress distribution. The unit cell geometry and 
boundary conditions employed in the numerical analysis are shown in 24-b, which is extracted 
from the cross-section of 24-a. The plane strain state is assumed. 

25-a Coarse Mesh 25-b Medium Mesh 25-c Fine Mesh 

Fig.25 Finite Element Mesh 

Three finite element meshes are used: coarse, medium and fine. Again, the equilibrium along the 
interface cannot be enforced using either the iso-parametric approach or the conventional mixed 
element approach. For example, 26-a, 26-b and 26-c shows the interfacial shear stress along the 
interface derived from conventional iso-parametric and mixed element analysis. One finds that 
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shear stress derived from the fiber side differs from that derived from the matrix side. The 
difference becomes smaller with use of a finer element mesh. Theoretically, the difference v^^ould 
approach zero and the stress would approach the actual stress as the size of the element 
approaches zero. 26-d shows the results with the application of heterogeneous elements along the 
interface. 

■ isoparametric method, fiber side 
isoparametric method, matrix side 

i.E+07 ^ "^    —- isoparametric method, fiber side 
-»- isoparametric method, matrix side 

- mixed method, fiber side 
mixed method, matrix side^ 

26-a Isoparametric and mixed Element Approach     26-b Isoparametric and mixed Element Approach 
(Coarse Mesh) (Medium Mesh) 

l,E+07 
displacement based, fiber side 
displacement-based,matrix si^ 
mixed method, fiber side 
mixed method, matrix sil 

26-c Isoparametric and mixed Element Approach 26-d Heterogeneous Element Approach 
(Fine Mesh) (Coarse Mesh) 

Fig.26 Interfacial Shear Stress Derived from Various Element Meshes and Approaches 

Fig.27 compares results received from traditional iso-parametric element analysis and results 
from the application of the displacement based heterogeneous element along the interface. There 
are six curves in Fig.27. The top two curves are shear stress distribution along the interface at 
fibers' sides, which are derived from the conventional iso-parametric element approach. The first 
top one shows the resuh using the coarse mesh, the second the result using the fine mesh. The 
bottom two curves are shear stress distribution along the interface of the matrix sides, which are 
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also derived from the conventional iso-parametric approach. The first bottom one is the result 
using the coarse mesh; the second the result using the fine mesh. The two curves in the middle 
are results from the introduction of heterogeneous elements along the interface. Although the 
coarse mesh is used, the resulting stress curves are located between the two curves derived from 
the iso-parametric element with the fine mesh. From this one sees the resuhs from use of a coarse 
mesh in the heterogeneous element is more accurate than use of a fine mesh in an iso-parametric 
element analysis! 

Fig.28 compares results received from conventional mixed element analysis to results from the 
application of the mixed heterogeneous element along the interface. Six curves are shown. The 
top two curves show shear stress distribution along the interface at the fibers' sides, which are 
derived from the conventional mixed element approach. The first top one is the result using the 
coarse mesh; the second the result using the fine mesh. The bottom two curves are shear stress 
distribution along the interface at the matrix sides, which are also derived from the conventional 
mixed approach. The first bottom one is the result using the coarse mesh; the second the result 
using the fine mesh. The two curves in the middle are results from the introduction of 
heterogeneous elements along the interface. Although the coarse mesh is used, the resulting 
stress-curves are located between the two curves derived from the iso-parametric element with 
fine mesh. Agvku from this, t.ne sees the results from use of a coarse mesh in the heterogeneous 
element is more accurate than use of a fine mesh in an iso-parametric element analysis! 

Fig.27 Comparison of Shear Stress along the Interface Derived From Displacement Based 
Heterogeneous Element Approach and Iso-parametric Element Approach 
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homogeneous method 
oarse mesh, fiber side 

homogeneous method 
, fine mesh, fiber side 

heterogeneous method 
coarse mesh, fiber side 

omogeneous element 
coarse mesh, matrix side 

homogeneous method 
fine mesh, matrix side 

heterogeneous element 
coarse mesh, matrix side 

15 30 45 60 75 90 

Fig.28 Comparison of Shear Stress along the Interface Derived From Mixed Heterogeneous 
Element Approach and Conventional Mixed Element Approach 

3.4.3.Simplified Mesh Generation 

S 

::5: 

^c 

Interface 

Fig.29   Rectangular Mesh 

As aforementioned, one difficulty with use of finite element analysis for composites is the time- 
consuming mesh generation process. The heterogeneous element can contain more than one 
material. There is no need to match the element boundary to the interface.   Simplified mesh 
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generation, therefore, can be used. For example, the unit cell used in the previous sub-section can 
be descretized into a rectangular element mesh as shown in Fig.29. The dotted red curve 
represents the interface. Elements along the interface are heterogeneous. Other employed 
elements are conventional iso-parametric. Fig.30 shows the calculated interfacial normal and 
shear stress distributions using both simplified rectangular mesh and the previous mesh. Again, 
results derived from the previous mesh and from the rectangular mesh are very close. 
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30-a  Radial Stress along the Interface 
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30-b Shear Stress along the Interface 

Fig.30 Comparison of Interfacial Stress Derived Using Rectangular Mesh and Regular Meshes 

3.4  Summary on Heterogeneous Elements 

Two Heterogeneous elsraent formulations are developed: displacement based and mixed. In the 
former formulation, displacement compatibility is enforced along the interface between two 
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dissimilar materials, along the boundary between heterogeneous elements, and along the 
boxmdary between heterogeneous elements and iso-parametric elements. The equilibriimi 
condition is satisfied in a weak form. In the latter formulation, not only is the compatibility 
along the interface of dissimilar materials on the boundary between heterogeneous elements and 
conventional mixed elements enforced, but the equilibrium condition is also strictly enforced. 

Numerical results show that replacing a homogeneous element at the interface area with a 
heterogeneous element improves accuracy significantly. In addition, the mesh generation process 
is immensely simplified. Because one heterogeneous element can contain two materials, there is 
no need to match the element boundary with the interface. A simple rectangular mesh can be 
adopted. 

IV. IMPACT OF THE PROJECT 

The "Digital element approach" is a unique technology for textile mechanics that has been 
developed through the research project. It is the only model that can analyze textile fabric 
deformation based upon fiber-scale mechanics. It can be used for textile process design of 
composite structural components, for deformation simulation of textile fabrics during the 
molding process and for the prediction of textile preform micro-geometry, such as yam paths, 
yam cross-section deformation and fiber paths. Further, it can be used for dynamic analysis of 
textile fabrics, such as for the high penetration failure mechanism of textile fabrics and for textile 
micro-Znano- device design. 

The "Heterogeneous element approach" is a new element method developed through the research 
project specifically for composite materials. The concept is that an element can consist of more 
than one material. liiC formulation of the heterogeneous element enforces both the stress 
equilibrium conditions and displacement continuity at the interface between fiber and matrix. As 
a result, the convergence rate of the heterogeneous element approach is much faster than the 
conventional iso-parametric element approach. Two kinds of heterogeneous element 
formulations have been developed: A displacement based heterogeneous element and a mixed 
heterogeneous element. Preliminary tests show that 80-90% less elements are required in the 
vicinity of the interface if the heterogeneous element approach is employed. 
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VI. NEW DISCOVERIES INVENTIONS, OR PATENT DISCLOSES: 
Two numerical methods are developed: 

1. Digital element simulation approach 
2. Heterogeneous finite element method 
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